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Topological models of provability logics

joint work with David Fernández-Duque.
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Provability logic

Definition

The provability logic GL is the normal modal logic given by:

K) �(ϕ→ ψ)→ (�ϕ→ �ψ);

Löb) �(�ϕ→ ϕ)→ �ϕ

Its rules are:

ϕ→ ψ ϕ

ψ
MP

ϕ

�ϕ
nec
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Realizations

A realization is a mapping [[·]] from modal formulae to arithmetical
formulae such that

i. For each propositional variable p, [[p]] is an arithmetical formula (e.g.
[[p]] =′ 1 + 0 = 0′),

ii. [[ϕ ∧ ψ]] = [[ϕ]] ∧ [[ψ]],

iii. [[¬ϕ]] = ¬[[ϕ]],

iv. [[�ϕ]] = Pr[[ϕ]].
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Provability logic

Theorem (Solovay)

tfae:

1 GL ` ϕ,

2 PA ` [[ϕ]] for any realization [[·]].
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Kripke models

A Kripke model is a directed graph (or frame) (X, R) together with a
valuation, i.e., a mapping [[·]] from modal formulae to subsets of X
such that

i. For each propositional variable p, [[p]] ⊂ X ,
ii. [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]],
iii. [[¬ϕ]] = X \ [[ϕ]],
iv. [[�ϕ]] = {x ∈ X : xRy implies y ∈ [[ϕ]]}.
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Kripke models

we say a formula ϕ is valid in a frame (X ,R) if for any model based
on (X ,R), [[ϕ]] = X .

we say a modal logic L is sound with respect to a class of frames F if
every theorem of L is valid in any model based on any X ∈ F .

conversely, a modal logic L is complete with respect to a class of
frames F if any formula valid in every model based on any X ∈ F is a
theorem of L.

equivalently, a modal logic L is complete with respect to a class of
frames F if any formula consistent with L has a model based on some
X ∈ F .

a modal logic L is strongly complete with respect to a class of frames
F if any set of formulae consistent with L has a model based on some
X ∈ F .
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Kripke models

Theorem (Segerberg)

tfae:

1 GL ` ϕ,

2 φ is valid in all transitive, converse well-founded Kripke frames.
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Completeness

This is, GL is complete with respect to the class of converse
well-founded trees.

In fact, GL is complete with respect to the class of converse
well-founded finite trees.

Since those are small trees, I’ll call them flowers.

as is well known, GL is not strongly complete with respect to any
class of frames.
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it is not strongly complete

Counterexample:

Γ = {♦p0} ∪ {�(pi → ♦pi+1) : i < ω}

p0 p1 p2

and so on.
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Topological interpretation

Let X be a topological space.

A topological realization is a function [[·]] mapping modal formulae to
℘(X ) such that

i. [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]],

ii. [[¬ϕ]] = X \ [[ϕ]],

iii. [[♦ϕ]] = d [[ϕ]].

we write X |= ϕ if [[ϕ]] = X for any realization [[·]].
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Topological interpretation

note: this is a generalization of the relational interpretation:

Let (X ,R) be a Kripke frame. Consider the topology on X generated
by all sets

R(x) = {y ∈ X : xRy}.

we denote this topology by τR .

It is easy to see that this coincides with the previous interpretation.
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Topological interpretation

r

Figure: a flower.

The topology τR is scattered.
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Figure: a flower.

The topology τR is scattered.
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Scattered spaces

We iterate transfinitely the derived set operator d :

i. d0A = A,

ii. dξ+1A = ddξA,

iii. dλA =
⋂
ξ<λ d

ξA.

Note: the sequence {dξA}ξ is non-increasing.

Definition

We say (X , τ) is a scattered space if some dξX is empty (alternatively, if
any subspace has an isolated point).
If X is scattered and x ∈ X , we call the rank of x the least ordinal ξ such
that x 6∈ dξ+1(X ).
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If X is scattered and x ∈ X , we call the rank of x the least ordinal ξ such
that x 6∈ dξ+1(X ).
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GL again.

Definition

The provability logic GL is the normal modal logic given by:

K) �(ϕ→ ψ)→ (�ϕ→ �ψ);

Löb) �(�ϕ→ ϕ)→ �ϕ

Its rules are:

ϕ→ ψ ϕ

ψ
MP

ϕ

�ϕ
nec

Remark.

Axiom K and both rules are valid in any topological space.

Lob’s axiom is valid in a topological space iff it is scattered.
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Löb) �(�ϕ→ ϕ)→ �ϕ

Its rules are:

ϕ→ ψ ϕ

ψ
MP

ϕ

�ϕ
nec

Remark.

Axiom K and both rules are valid in any topological space.

Lob’s axiom is valid in a topological space iff it is scattered.

Juan P. Aguilera (TU Vienna) The botanics of provability (and ωω other short stories). Hejnice 2016 16 / 25



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

GL again.

Definition

The provability logic GL is the normal modal logic given by:

K) �(ϕ→ ψ)→ (�ϕ→ �ψ);
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Completeness theorems

Theorem (Esakia)

tfae:

1 GL ` ϕ,

2 X |= ϕ for all scattered spaces X .

This result can be improved.
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The botanics of provability

By Segerberg’s theorem, any formula consistent with GL can be
satisfied on a flower.

Therefore, a consistent finite set of formulae can be satisfied on a
collection of flowers.
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The botanics of provability

By Segerberg’s theorem, any formula consistent with GL can be
satisfied on a flower.

Therefore, a consistent finite set of formulae can be satisfied on a
bouquet.
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The botanics of provability

Definition

Let (T ,R) be a countable, converse well-founded flower, and let
ρ : T → Ord be the rank function on T with respect to τR .

We define a new topology, σR , to be the least topology extending τR
such that if

w ∈ T is such that ρ(w) is a limit ordinal,
{vi}i<ω enumerates all daughters (saplings?) of w exactly once, and
n < ω, then

{w} ∪
⋃
n<i

(
{vi} ∪ R(vi )

)
∈ σR

We say a topological space (T , σ) is an ω-bouquet if there exists a
binary relation R on T such that (T ,R) is a countable, converse
well-founded tree and σ = σR .
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Completeness

Theorem

GL is strongly complete with respect to the set of all ω-bouquets.

This again can be improved.
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more Completeness

Notation: let ρ be the rank function.

Set

(α, β)X = {x ∈ X : α < ρx < β}.

Definition

Let (X , τ) be a scattered space. We define τ+1 to be the topology
generated by τ and all sets (α, β]X .

We can also define τn+1 = (τn)+1.

This procedure can somehow be iterated transfinitely to yield
topologies τλ.
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even more Completeness

Theorem

Let λ be a nonzero ordinal. If (X , τ) is tall enough, then GL is strongly
complete with respect to (X , τ+λ).

Particular cases of this theorem are as follows:
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examples

Example

Let X be an ordinal number. I, the initial topology, is generated by all
segments [0, α].

Example

Let X be an ordinal number. I+1, the order topology, is generated by {0}
and all segments (α, β).

Example

Let X be an ordinal number. Then τc , the club topology, is generated by
I+1 and all I+1-limit sets.
Alternatively, U 3 x contains a neighborhood of x iff x has countable
cofinality or U is a club in x .
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Completeness

GL is never complete with respect to the topology I.

Also, it is consistent with the existence of a Mahlo cardinal that GL is
incomplete with respect to the topology τc .

However,

Corollary

GL is strongly complete with respect to an ordinal α with the topology
I+1 iff α > ωω.

Corollary

GL is strongly complete with respect to an ordinal α with the topology
τc+1 iff α > ωωω+1.
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The end

Thank you!
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