The botanics of provability (and ω^{ω} other short stories).

Juan P. Aguilera

TU Wien

Hejnice 2016

イロト イ団ト イヨト イヨト

joint work with David Fernández-Duque.

Definition

The provability logic GL is the normal modal logic given by:

Definition

The provability logic GL is the normal modal logic given by:

K)
$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi);$$

Löb) $\Box(\Box \varphi \to \varphi) \to \Box \varphi$

< 3 >

Definition

The provability logic GL is the normal modal logic given by:

$$\begin{array}{l} \mathsf{K}) \ \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi); \\ \mathsf{L\ddot{o}b}) \ \Box(\Box \varphi \to \varphi) \to \Box \varphi \end{array}$$

Its rules are:

$$\frac{\varphi \to \psi \quad \varphi}{\psi} \text{ MP} \qquad \qquad \frac{\varphi}{\Box \varphi} \text{ nec}$$

i. For each propositional variable p, [[p]] is an arithmetical formula (e.g. [[p]] = 1 + 0 = 0'),

- i. For each propositional variable p, [[p]] is an arithmetical formula (e.g. [[p]] = 1 + 0 = 0'),
- ii. $[[\varphi \wedge \psi]] = [[\varphi]] \wedge [[\psi]]$,

- i. For each propositional variable p, [[p]] is an arithmetical formula (e.g. [[p]] = 1 + 0 = 0'),
- ii. $[[\varphi \wedge \psi]] = [[\varphi]] \wedge [[\psi]]$,
- iii. $[[\neg \varphi]] = \neg [[\varphi]],$

- i. For each propositional variable p, [[p]] is an arithmetical formula (e.g. [[p]] = 1 + 0 = 0'),
- ii. $[[\varphi \wedge \psi]] = [[\varphi]] \wedge [[\psi]]$,
- iii. $[[\neg \varphi]] = \neg [[\varphi]],$
- iv. $[[\Box \varphi]] = \Pr[[\varphi]].$

Theorem (Solovay)
tfae:
9 GL $\vdash \varphi$,
2 PA \vdash [[φ]] for any realization [[·]].

・ロト ・ 日 ト ・ 田 ト ・

• A *Kripke model* is a directed graph (or frame) (X, R) together with a *valuation*, i.e., a mapping [[·]] from modal formulae to subsets of X such that

- A *Kripke model* is a directed graph (or frame) (X, R) together with a *valuation*, i.e., a mapping [[·]] from modal formulae to subsets of X such that
 - i. For each propositional variable p, $[[p]] \subset X$,

- A *Kripke model* is a directed graph (or frame) (X, R) together with a *valuation*, i.e., a mapping [[·]] from modal formulae to subsets of X such that
 - i. For each propositional variable p, $[[p]] \subset X$,
 - ii. $[[\varphi \land \psi]] = [[\varphi]] \cap [[\psi]],$

- A *Kripke model* is a directed graph (or frame) (X, R) together with a *valuation*, i.e., a mapping [[·]] from modal formulae to subsets of X such that
 - i. For each propositional variable p, $[[p]] \subset X$,
 - ii. $[[\varphi \land \psi]] = [[\varphi]] \cap [[\psi]],$
 - iii. $[[\neg \varphi]] = X \setminus [[\varphi]],$

- A *Kripke model* is a directed graph (or frame) (X, R) together with a *valuation*, i.e., a mapping [[·]] from modal formulae to subsets of X such that
 - i. For each propositional variable p, $[[p]] \subset X$,

ii.
$$[[\varphi \land \psi]] = [[\varphi]] \cap [[\psi]],$$

iii.
$$[[\neg \varphi]] = X \setminus [[\varphi]],$$

iv.
$$[[\Box \varphi]] = \{x \in X : xRy \text{ implies } y \in [[\varphi]]\}.$$

 we say a formula φ is *valid* in a frame (X, R) if for any model based on (X, R), [[φ]] = X.

< 67 ▶

- 4 ∃ ▶

- we say a formula φ is valid in a frame (X, R) if for any model based on (X, R), [[φ]] = X.
- we say a modal logic L is sound with respect to a class of frames F if every theorem of L is valid in any model based on any X ∈ F.

- we say a formula φ is valid in a frame (X, R) if for any model based on (X, R), [[φ]] = X.
- we say a modal logic L is sound with respect to a class of frames F if every theorem of L is valid in any model based on any X ∈ F.
- conversely, a modal logic *L* is *complete* with respect to a class of frames \mathcal{F} if any formula valid in every model based on any $X \in \mathcal{F}$ is a theorem of *L*.

- we say a formula φ is valid in a frame (X, R) if for any model based on (X, R), [[φ]] = X.
- we say a modal logic L is sound with respect to a class of frames F if every theorem of L is valid in any model based on any X ∈ F.
- conversely, a modal logic *L* is *complete* with respect to a class of frames \mathcal{F} if any formula valid in every model based on any $X \in \mathcal{F}$ is a theorem of *L*.
- equivalently, a modal logic *L* is *complete* with respect to a class of frames \mathcal{F} if any formula consistent with *L* has a model based on some $X \in \mathcal{F}$.

- we say a formula φ is valid in a frame (X, R) if for any model based on (X, R), [[φ]] = X.
- we say a modal logic L is sound with respect to a class of frames F if every theorem of L is valid in any model based on any X ∈ F.
- conversely, a modal logic *L* is *complete* with respect to a class of frames \mathcal{F} if any formula valid in every model based on any $X \in \mathcal{F}$ is a theorem of *L*.
- equivalently, a modal logic *L* is *complete* with respect to a class of frames \mathcal{F} if any formula consistent with *L* has a model based on some $X \in \mathcal{F}$.
- a modal logic *L* is strongly complete with respect to a class of frames \mathcal{F} if any set of formulae consistent with *L* has a model based on some $X \in \mathcal{F}$.

< 回 > < 三 > < 三 >

Theorem (Segerberg) tfae: GL ⊢ φ, φ is valid in all transitive, converse well-founded Kripke frames.

< ∃ ►

• This is, GL is *complete* with respect to the class of converse well-founded trees.

- This is, GL is *complete* with respect to the class of converse well-founded trees.
- In fact, GL is *complete* with respect to the class of converse well-founded finite trees.

- This is, GL is *complete* with respect to the class of converse well-founded trees.
- In fact, GL is *complete* with respect to the class of converse well-founded finite trees.
- Since those are small trees, I'll call them flowers.

- This is, GL is *complete* with respect to the class of converse well-founded trees.
- In fact, GL is *complete* with respect to the class of converse well-founded finite trees.
- Since those are small trees, I'll call them flowers.
- as is well known, GL is not strongly complete with respect to any class of frames.

$$\Gamma = \{\Diamond p_0\} \cup \{\Box (p_i \to \Diamond p_{i+1}) \colon i < \omega\}$$

$$\Gamma = \{\Diamond p_0\} \cup \{\Box (p_i \to \Diamond p_{i+1}) \colon i < \omega\}$$

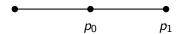
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

• and so on.

$$\Gamma = \{\Diamond p_0\} \cup \{\Box (p_i \to \Diamond p_{i+1}) \colon i < \omega\}$$

• and so on.

$$\Gamma = \{\Diamond p_0\} \cup \{\Box (p_i \to \Diamond p_{i+1}) \colon i < \omega\}$$



• and so on.

$$\Gamma = \{\Diamond p_0\} \cup \{\Box (p_i \to \Diamond p_{i+1}) \colon i < \omega\}$$

and so on.

Let X be a topological space.

Let X be a topological space. A topological realization is a function [[·]] mapping modal formulae to $\wp(X)$ such that

Let X be a topological space.

A topological realization is a function [[·]] mapping modal formulae to $\wp(X)$ such that

i. $[[\varphi \land \psi]] = [[\varphi]] \cap [[\psi]]$,

Let X be a topological space.

A topological realization is a function [[·]] mapping modal formulae to $\wp(X)$ such that

- i. $[[\varphi \land \psi]] = [[\varphi]] \cap [[\psi]],$
- ii. $[[\neg \varphi]] = X \setminus [[\varphi]]$,

Let X be a topological space.

A topological realization is a function [[·]] mapping modal formulae to $\wp(X)$ such that

- i. $[[\varphi \land \psi]] = [[\varphi]] \cap [[\psi]],$
- ii. $[[\neg \varphi]] = X \setminus [[\varphi]],$
- iii. $[[\Diamond \varphi]] = d[[\varphi]].$

Let X be a topological space.

A topological realization is a function [[·]] mapping modal formulae to $\wp(X)$ such that

i.
$$[[\varphi \land \psi]] = [[\varphi]] \cap [[\psi]],$$

ii.
$$[[\neg \varphi]] = X \setminus [[\varphi]],$$

iii.
$$[[\Diamond \varphi]] = d[[\varphi]].$$

we write $X \models \varphi$ if $[[\varphi]] = X$ for any realization $[[\cdot]]$.

• note: this is a generalization of the relational interpretation:

- note: this is a generalization of the relational interpretation:
- Let (X, R) be a Kripke frame. Consider the topology on X generated by all sets

 $R(x) = \{y \in X : xRy\}.$

- note: this is a generalization of the relational interpretation:
- Let (X, R) be a Kripke frame. Consider the topology on X generated by all sets

$$R(x) = \{y \in X : xRy\}.$$

• we denote this topology by τ_R .

- note: this is a generalization of the relational interpretation:
- Let (X, R) be a Kripke frame. Consider the topology on X generated by all sets

$$R(x) = \{y \in X : xRy\}.$$

- we denote this topology by τ_R .
- It is easy to see that this coincides with the previous interpretation.

Topological interpretation

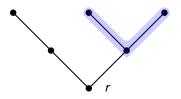


Figure: a flower.

Topological interpretation

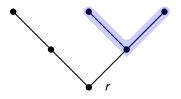


Figure: a flower.

The topology τ_R is scattered.

i.
$$d^0 A = A$$
,

i.
$$d^0 A = A$$
,

ii. $d^{\xi+1}A = dd^{\xi}A$,

i.
$$d^{0}A = A$$
,
ii. $d^{\xi+1}A = dd^{\xi}A$,

iii. $d^{\lambda}A = \bigcap_{\xi < \lambda} d^{\xi}A.$

- i. $d^0 A = A$, ii. $d^{\xi+1} A = dd^{\xi} A$,
- iii. $d^{\lambda}A = \bigcap_{\xi < \lambda} d^{\xi}A.$

Note: the sequence $\{d^{\xi}A\}_{\xi}$ is non-increasing.

- i. $d^0 A = A$,
- ii. $d^{\xi+1}A = dd^{\xi}A$,
- iii. $d^{\lambda}A = \bigcap_{\xi < \lambda} d^{\xi}A.$

Note: the sequence $\{d^{\xi}A\}_{\xi}$ is non-increasing.

Definition

We say (X, τ) is a scattered space if some $d^{\xi}X$ is empty (alternatively, if any subspace has an isolated point).

i.
$$d^0 A = A$$
,

ii.
$$d^{\xi+1}A = dd^{\xi}A$$
,

iii.
$$d^{\lambda}A = \bigcap_{\xi < \lambda} d^{\xi}A.$$

Note: the sequence $\{d^{\xi}A\}_{\xi}$ is non-increasing.

Definition

We say (X, τ) is a scattered space if some $d^{\xi}X$ is empty (alternatively, if any subspace has an isolated point).

If X is scattered and $x \in X$, we call the rank of x the least ordinal ξ such that $x \notin d^{\xi+1}(X)$.

Definition

The provability logic GL is the normal modal logic given by:

K)
$$\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi);$$

.öb) $\Box(\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$

Its rules are:

$$\frac{\varphi \to \psi \quad \varphi}{\psi} \text{ MP}$$

Juan P. Aguilera (TU Vienna) The botanics of provability (and
$$\omega^{\omega}$$
 other sh

- ∢ ∃ ▶

 $\frac{\varphi}{\Box\varphi}$ nec

Definition

The provability logic GL is the normal modal logic given by:

K)
$$\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi);$$

.öb) $\Box(\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$

Its rules are:

$$\frac{\varphi \to \psi \quad \varphi}{\psi} \text{ MP}$$

Remark.

< ∃ >

 $\frac{\varphi}{\Box \varphi}$ nec

Definition

The provability logic GL is the normal modal logic given by:

K)
$$\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi);$$

.öb) $\Box(\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$

Its rules are:

$$\frac{\varphi \to \psi \qquad \varphi}{\psi} \quad \text{MP} \qquad \qquad \frac{\varphi}{\Box \varphi} \text{ nec}$$

Remark.

• Axiom K and both rules are valid in any topological space.

Definition

The provability logic GL is the normal modal logic given by:

K)
$$\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi);$$

.öb) $\Box(\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$

Its rules are:

$$\frac{\varphi \to \psi \quad \varphi}{\psi} \quad \text{MP} \qquad \qquad \frac{\varphi}{\Box \varphi} \text{ neods}$$

Remark.

- Axiom K and both rules are valid in any topological space.
- Lob's axiom is valid in a topological space iff it is scattered.

Theorem (Esakia)

tfae:

- **2** $X \models \varphi$ for all scattered spaces X.

Theorem (Esakia)

tfae:

- **2** $X \models \varphi$ for all scattered spaces X.

This result can be improved.

• By Segerberg's theorem, any formula consistent with GL can be satisfied on a flower.

- By Segerberg's theorem, any formula consistent with GL can be satisfied on a flower.
- Therefore, a consistent finite set of formulae can be satisfied on a collection of flowers.

- By Segerberg's theorem, any formula consistent with GL can be satisfied on a flower.
- Therefore, a consistent finite set of formulae can be satisfied on a *bouquet*.

• Let (T, R) be a countable, converse well-founded flower, and let $\rho: T \to \text{Ord}$ be the rank function on T with respect to τ_R .

- Let (T, R) be a countable, converse well-founded flower, and let $\rho: T \to \text{Ord}$ be the rank function on T with respect to τ_R .
- We define a new topology, $\sigma_R,$ to be the least topology extending τ_R such that if
 - $w \in T$ is such that $\rho(w)$ is a limit ordinal,

- Let (T, R) be a countable, converse well-founded flower, and let $\rho: T \to \text{Ord}$ be the rank function on T with respect to τ_R .
- We define a new topology, $\sigma_R,$ to be the least topology extending τ_R such that if
 - $w \in T$ is such that $\rho(w)$ is a limit ordinal,
 - $\{v_i\}_{i < \omega}$ enumerates all daughters (saplings?) of w exactly once, and

- Let (T, R) be a countable, converse well-founded flower, and let $\rho: T \to \text{Ord}$ be the rank function on T with respect to τ_R .
- We define a new topology, $\sigma_R,$ to be the least topology extending τ_R such that if
 - $w \in T$ is such that $\rho(w)$ is a limit ordinal,
 - $\{v_i\}_{i < \omega}$ enumerates all daughters (saplings?) of *w* exactly once, and
 - $n < \omega$, then

$$\{w\} \cup \bigcup_{n < i} (\{v_i\} \cup R(v_i)) \in \sigma_R$$

- Let (T, R) be a countable, converse well-founded flower, and let $\rho: T \to \text{Ord}$ be the rank function on T with respect to τ_R .
- We define a new topology, $\sigma_R,$ to be the least topology extending τ_R such that if
 - $w \in T$ is such that $\rho(w)$ is a limit ordinal,
 - $\{v_i\}_{i < \omega}$ enumerates all daughters (saplings?) of w exactly once, and
 - $n < \omega$, then

$$\{w\} \cup \bigcup_{n < i} (\{v_i\} \cup R(v_i)) \in \sigma_R$$

We say a topological space (T, σ) is an ω-bouquet if there exists a binary relation R on T such that (T, R) is a countable, converse well-founded tree and σ = σ_R.

Theorem

GL is strongly complete with respect to the set of all ω -bouquets.

Theorem

GL is strongly complete with respect to the set of all ω -bouquets.

• This again can be improved.

more Completeness

Notation: let ρ be the rank function.

more Completeness

Notation: let ρ be the rank function. Set

$$(\alpha,\beta)_X = \{x \in X \colon \alpha < \rho x < \beta\}.$$

more Completeness

Notation: let ρ be the rank function. Set

$$(\alpha,\beta)_{X} = \{x \in X \colon \alpha < \rho x < \beta\}.$$

Definition

Let (X, τ) be a scattered space.

Notation: let ρ be the rank function. Set

$$(\alpha,\beta)_{X} = \{x \in X \colon \alpha < \rho x < \beta\}.$$

Definition

Let (X, τ) be a scattered space. We define τ_{+1} to be the topology generated by τ and all sets $(\alpha, \beta]_X$.

Notation: let ρ be the rank function. Set

$$(\alpha,\beta)_X = \{x \in X \colon \alpha < \rho x < \beta\}.$$

Definition

Let (X, τ) be a scattered space. We define τ_{+1} to be the topology generated by τ and all sets $(\alpha, \beta]_X$.

• We can also define $\tau_{n+1} = (\tau_n)_{+1}$.

Notation: let ρ be the rank function. Set

$$(\alpha,\beta)_X = \{x \in X \colon \alpha < \rho x < \beta\}.$$

Definition

Let (X, τ) be a scattered space. We define τ_{+1} to be the topology generated by τ and all sets $(\alpha, \beta]_X$.

- We can also define $\tau_{n+1} = (\tau_n)_{+1}$.
- This procedure can somehow be iterated transfinitely to yield topologies τ_{λ} .

Theorem

Let λ be a nonzero ordinal. If (X, τ) is tall enough, then GL is strongly complete with respect to $(X, \tau_{+\lambda})$.

Theorem

Let λ be a nonzero ordinal. If (X, τ) is tall enough, then GL is strongly complete with respect to $(X, \tau_{+\lambda})$.

• Particular cases of this theorem are as follows:

Let X be an ordinal number. \mathcal{I} , the *initial topology*, is generated by all segments $[0, \alpha]$.

Let X be an ordinal number. \mathcal{I} , the *initial topology*, is generated by all segments $[0, \alpha]$.

Example

Let X be an ordinal number. \mathcal{I}_{+1} , the order topology, is generated by $\{0\}$ and all segments (α, β) .

Let X be an ordinal number. \mathcal{I} , the *initial topology*, is generated by all segments $[0, \alpha]$.

Example

Let X be an ordinal number. \mathcal{I}_{+1} , the order topology, is generated by $\{0\}$ and all segments (α, β) .

Example

Let X be an ordinal number. Then τ_c , the *club topology*, is generated by \mathcal{I}_{+1} and all \mathcal{I}_{+1} -limit sets.

Let X be an ordinal number. \mathcal{I} , the *initial topology*, is generated by all segments $[0, \alpha]$.

Example

Let X be an ordinal number. \mathcal{I}_{+1} , the order topology, is generated by $\{0\}$ and all segments (α, β) .

Example

Let X be an ordinal number. Then τ_c , the *club topology*, is generated by \mathcal{I}_{+1} and all \mathcal{I}_{+1} -limit sets. Alternatively, $U \ni x$ contains a neighborhood of x iff x has countable cofinality or U is a club in x. $\bullet~\mbox{GL}$ is never complete with respect to the topology ${\cal I}.$

- GL is never complete with respect to the topology \mathcal{I} .
- Also, it is consistent with the existence of a Mahlo cardinal that GL is incomplete with respect to the topology τ_c.

- GL is never complete with respect to the topology \mathcal{I} .
- Also, it is consistent with the existence of a Mahlo cardinal that GL is incomplete with respect to the topology τ_c .

However,

- GL is never complete with respect to the topology \mathcal{I} .
- Also, it is consistent with the existence of a Mahlo cardinal that GL is incomplete with respect to the topology τ_c .

However,

Corollary

GL is strongly complete with respect to an ordinal α with the topology \mathcal{I}_{+1} iff $\alpha > \omega^{\omega}$.

- GL is never complete with respect to the topology \mathcal{I} .
- Also, it is consistent with the existence of a Mahlo cardinal that GL is incomplete with respect to the topology τ_c .

However,

Corollary

GL is strongly complete with respect to an ordinal α with the topology \mathcal{I}_{+1} iff $\alpha > \omega^{\omega}$.

Corollary

GL is strongly complete with respect to an ordinal α with the topology τ_{c+1} iff $\alpha > \omega_{\omega^{\omega}+1}$.

Thank you!

э

< 🗗 🕨 - A 🖃